Khi Einstein lần đầu tiên tiên đoán rằng ánh sáng dịch chuyển với tốc độ giống nhau ở bất cứ đâu trong vũ trụ, nhà vật lý vĩ đại nhất thế kỉ 20 đã 'đóng nhãn' tốc độ của nó là 299.792,458 km/giây.
Nhưng đó không phải là tất cả. Trên thực tế, đây mới chỉ là bước khởi đầu của câu chuyện dài về tốc độ ánh sáng.
Trước thế kỉ 20, khối lượng - thứ làm nên bạn, tôi và tất cả những gì chúng ta nhìn thấy - và năng lượng được coi là độc lập với nhau.
Nhưng vào năm 1905, Lý thuyết Tương Đối Hẹp của Einstein đã thay đổi mãi mãi cách mà các nhà vật lý nhìn vũ trụ, bằng việc ràng buộc khối lượng và năng lượng vào một phương trình tuy đơn giản nhưng cực kì quan trọng E=mc^2.
Về bản chất, phương trình này tiên đoán không có bất cứ thứ gì có khối lượng có thể đạt vận tốc bằng ánh sáng, chứ đừng nói là nhanh hơn.
Nỗ lực thành công nhất của loài người trong việc tiệm cận tốc độ ánh sáng nằm trong các máy gia tốc hạt siêu mạnh như Máy Gia tốc Hạt Lớn (LHC) của CERN hay Tevatron của Mỹ.
Các cỗ máy khổng lồ này (LHC thậm chí còn có chu vi vắt ngang qua dãy Alps, nằm trên cả lãnh thổ Pháp và Thụy Sĩ) có khả năng tăng tốc độ các hạ nguyên tử lên đến 99.99% tốc độ ánh sáng, tuy nhiên theo giải thích của nhà vật lý đạt giải Nobel David Gross, những hạt này sẽ không bao giờ chạm đến ngưỡng tốc độ vũ trụ.
Máy dò hạt ATLAS, một phần của LHC, từng đi vào lịch sử với tư cách nơi đầu tiên tìm ra hạt Higgs
Bởi, để làm như thế cần vô hạn năng lượng (E), và trong quá trình đó, khối lượng (m) của vật thể cũng sẽ đi tới vô hạn, vốn là điều bất khả. Đó là lý do tại sao photon - phân tử của ánh sáng lại đạt được tốc độ này, vì chúng về bản chất không có khối lượng.
Einstein là một biểu tượng điên rồ trong thời đại của ông. Tuy nhiên điên rồ lại luôn là đặc tính chung của các nhà vật lý, thế nên kể từ Einstein, họ đã luôn cố gắng tìm ra những thứ có khả năng đạt tốc độ nhanh hơn cả ánh sáng, mà vẫn tuân theo các nguyên tắc vũ trụ của Thuyết Tương Đối Hẹp.
Rất nhiều ý tưởng sáng tạo trong số đó - trong khi không bác bỏ thế giới quan vũ trụ của Einstein - đã cho chúng ta một cái nhìn sâu sắc hơn về đặc tính của ánh sáng cũng như địa hạt lượng tử.
1. Big Bang và Giãn nở Vũ Trụ
Bạn đã bao giờ tự hỏi, liệu có một luồng ánh sáng siêu mạnh nào có thể đi xuyên qua vũ trụ? Câu trả lời là KHÔNG. Đơn giản là vì vũ trụ của chúng ta không ngừng giãn nở với tốc độ cao hơn nhiều so với ánh sáng. Tốc độ này nằm khoảng 67.15 ± 1.2 (km/s)/Mpc, tức là gần 68 kilomet/ giây/ megaparcec.
Điều này có nghĩa là bất cứ thiên hà nào đang cách chúng ta 10 megaparcec (khoảng 30 triệu năm ánh sáng) sẽ dần dần rời xa khỏi chúng ta với tốc độ 680 km/giây. Có 'hack' trời thì ánh sáng từ Trái đất cũng không bao giờ có thể đến được thiên hà đó.
Mặc dù theo thuyết Tương Đối Hẹp, không vật thể có khối lượng nào có thể đi nhanh hơn tốc độ ánh sáng, tuy nhiên câu hỏi đặt ra là, liệu có thể có những vật thể không có khối lượng như chính photon ánh sáng?
Bạn ít nhất không cần phải dựa dẫm vào các nhà bác học điên với những thuyết kì dị để tìm ra những hạt "vô lượng" như thế. Khoảng không vũ trụ của chúng ta, do không chứa bất kì một thứ vật chất nào, chính là một 'vật thể' không có khối lượng.
Có thể nói thuyết tương đối áp dụng với tất cả những vật thể bên trong vũ trụ, nhưng không phải là chính bản thân vũ trụ.
Vũ Trụ giãn nở, khoảng cách giữa các thiên hà dần rời xa nhau.
Đây chính là những gì mà các nhà vật lý Alan Guth và Andrei Linde giả thiết vào những năm 1980, về điều đã xảy ra ngay tức khắc sau Vụ Nổ Lớn Big Bang.
Trong một phần một triệu tỉ tỉ (10^-24) của giây đầu tiên sau vụ nổ, vũ trụ đã liên tục tăng gấp đôi kích cỡ, và kết quả là rìa ngoài của nó mở rộng nhanh chóng, nhanh hơn tốc độ ánh sáng rất nhiều.
Big Bang
2. Rối lượng tử
Nghe qua thì Rối Lượng Tử có vẻ khó hiểu, bí hiểm và ... hơi "rối", nhưng hiểu theo nghĩa sơ khai nhất thì đây chỉ là cách mà các hạt hạ phân tử "giao tiếp" với nhau. Và điều thú vị mà các nhà nghiên cứu đã chỉ ra, đó là quá trình giao tiếp này thậm chí còn nhanh hơn cả ánh sáng.
"Nếu tôi đặt hai electron nằm rất gần nhau, chúng sẽ giao động cùng tần số theo thuyết lượng tử," nhà vật lý Kaku Michio lý giải với Big Think. Giờ nếu chia rẽ hai electron đó sao cho chúng cách nhau hàng trăm hoặc thậm chí hàng ngàn năm ánh sáng, và chúng sẽ giữ cho kết nối chốc lát này mở rộng.
Rối lượng tử giữa hai hạt
"Nếu tôi lắc nhẹ một electron, thì ngay lập tức electron còn lại sẽ 'cảm nhận' được rung chấn, nhanh hơn so với tốc độ ánh sáng. Einstein cho rằng không có gì có thể đi nhanh hơn ánh sáng, vậy nên trong quá khứ ông đã là một trong những người phản đối thuyết lượng tử quyết liệt nhất," Kaku viết thêm.
Trên thực tế vào năm 1935, Einstein cùng với Boris Podolsky và Nathan Rosen đã thử bác bỏ thuyết lượng tử bằng một thí nghiệm tư duy mà Einstein gọi là "các tác động ma quỷ ở khoảng cách xa".
Khá hài hước khi thí nghiệm này của họ lại đặt nền móng cho cái mà ngày nay chúng ta gọi là nghịch lý EPR( Einstein-Podolsky-Rosen), một nghịch lý mô tả chính xác hiện tượng kết nối tức thì trong rối lượng tử vừa được miêu tả ở trên.
3. Tachyon
Sự đổi hướng của hạt Tachyon, khoảnh khắc duy nhất (theo giả thuyết) khi ta chứng kiến được hạt này khi nó đi qua sóng xung kích( đường đen) phát ra từ bức xạ Cherenkov
Khả năng về một loại hạt dịch chuyển nhanh hơn ánh sáng lần đầu được đề xuất vào năm 1962 bởi nhà vật lý E.C.G Sudarshan và các đồng sự, mặc dù lúc đầu họ sử dụng thuật ngữ "siêu-hạt".
Gã siêu nhân Barry Allen từ series The Flash với "mô-tơ Tachyon"
Trong bài luận văn viết năm 1967 của mình, Gerald Feinberg đã lần đầu sử dụng thuật ngữ "Tachyon" - vốn bắt nguồn từ từ Tachy có nghĩa là 'nhanh' trong tiếng Hy Lạp - đồng thời đề xuất các hạt tachyon có thể trở thành một lượng tử ( nghĩa là- một lượng nhỏ nhất của năng lượng phát xạ) trong vật lý với một 'khối lượng tưởng tượng".
Tuy nhiên cộng đồng khoa học đã sớm nhận ra rằng sự kích thích trường khối lượng tưởng tượng như thế, về bản chất không truyền nhanh hơn ánh sáng, mà thay vào đó biểu diễn một trạng thái không ổn định được biết tới với cái tên ngưng tụ tachyon.
Các pháp sư sáng chế ra đồng hồ thời gian trong series Harry Potter liệu có biết đến sự hiện diện của Tachyon ?
Nếu một hạt như thế tồn tại, loài người có thể xây nên những "tachyonic antitelephone", một thiết bị tưởng tượng có khả năng truyền sóng nhanh hơn ánh sáng, và thậm chí, truyền ngược về quá khứ. Đây có thể chính là nền tảng của du hành thời gian!
Einstein (bạn còn kỳ vọng khác nữa?) một lần nữa bác bỏ điều này trong thí nghiệm nổi tiếng của mình năm 1907, khi chứng minh các tín hiệu nhanh hơn ánh sáng có thể dẫn đến việc vi phạm luật nhân quả.
Nón không-thời gian là một biểu trưng vật lý quan trọng của luật nhân quả, được lấy cảm hứng từ hình ảnh ném 1 hòn đá xuống mặt nước. Bất cứ vật thể nào di chuyển nhanh hơn tốc độ ánh sáng đều vượt ra ngoài đường biên quá khứ(nón dưới) và tương lai (nón trên).
Luật nhân quả khẳng định tất cả những sự kiện diễn ra trong đường biên ở phần nào của nón thì sẽ phải xuất hiện trong đường biên của phần còn lại
4. Lỗ Giun
Cảnh du hành Vũ Trụ qua lỗ giun ngoạn mục trong phim Interstellar
Mặc dù Einstein đã chà đạp không thương tiếc lên giấc mộng du hành vũ trụ của chúng ta với thuyết Tương Đối Hẹp, nhưng may quá ông lại còn nghĩ ra thêm Thuyết Tương Đối rộng. Hẹp thì kết nối khối lượng với năng lượng lại, trong khi Rộng lại đan quện thời gian với không gian vào nhau.
Không-thời gian cong
"Cách duy nhất để đạp đổ giới hạn tốc độ ánh sáng là thông qua thuyết Tương Đối rộng và sự bẻ cong không thời gian," Kaku viết. Sự bẻ cong này được chúng ta gọi thông tục là "lỗ giun" hay "cầu Einstein-Rosen", với giả định rằng nó sẽ giúp du hành một khoảng cách xa trong nháy mắt
Vào năm 1988, nhà vật lý lý thuyết Kip Thorne đã sử dụng các phương trình của thuyết tương đối rộng để tiên đoán về khả năng 'mở khóa' lỗ giun thông qua cái gọi là "vật chất tối".
"Một điều phi thường là nếu thuần túy dựa vào các định luật vật lý lượng tử, việc tồn tại các "vật chất tối" hoàn toàn có thể xảy ra," Thorne viết trong cuốn sách "Khoa học giữa các vì sao" của mình
Vật chất tối, cánh cổng để mở ra lỗ giun
Việc nghiên cứu vật chất tối thậm chí đã xuất hiện trong nhiều phòng thí nghiệm trên khắp thế giới, tuy nhiên sau gần 30 năm kể từ ngày Thorne lần đầu đưa khái niệm này ra công chúng, kết quả nghiên cứu vẫn hầu như dậm chân tại chỗ
Niềm hy vọng về tính ổn định của vật chất tối, giờ đây hầu như chỉ có thể hy vọng vào một học thuyết rất hiện đại của thế kỉ 20 - Lý thuyết dây hay String theory - lý thuyết đi đầu trong hy vọng nối kết giữa trọng trường và thuyết lượng tử
Hình ảnh trực quan của String theory
5. Bức xạ Cherenkov
Khi các vật thể dịch chuyển nhanh hơn vận tốc âm thanh, chúng tao ra vụ nổ âm thanh. Tương tự, khi thứ gì đó dịch chuyển nhanh hơn tốc độ ánh sáng, chúng cũng tạo ra một thứ gọi là "vụ nổ ánh sáng".
Trên thực tế, đây là điều diễn ra hàng ngày ở khắp nơi - người ta gọi nó là bức xạ Cherenkov, lấy theo tên của nhà khoa học Xô Viết đạt giải Nobel Pavel Alekseyevich Cherenkov.
Về mặt vật lý mà nói, ánh sáng dịch chuyển với tốc độ c/n ở môi trường có chỉ số khúc xạ n (không phải môi trường chân không). Điều thú vị là ở chỗ trong một vài môi trường như vậy, tồn tại các hạt di chuyển nhanh hơn tốc độ c/n (nhưng vẫn chậm hơn c), và điều nãy dẫn đến hiện tượng bức xạ Cherenkov.
Bức xạ Cherenkov trong Lò phản ứng Thí nghiệm Cao cấp
Bức xạ Cherenkov sở dĩ bừng sáng là bởi nguyên lý cốt lõi trong Lò phản ứng Thí nghiệm Cao cấp là việc giữ nó trong nước để làm lạnh.
Trong nước, ánh sáng chỉ còn di chuyển với 75% tốc độ mà nó di chuyển trong chân không, tuy nhiên các electron được tạo nên bởi phản ứng trong lò di chuyển trong nước nhanh hơn cả ánh sáng .
Các hạt như electron vượt qua tốc độ ánh sáng trong nước, hay các dung môi khác như thủy tinh, tạo nên các sóng kích tương tự như từ các vụ nổ âm thanh.